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Summary. A F O R T R A N  program, "Genestats" was 
designed to analyse genotypic and allelic frequencies in 
subpopulations. The genotypes of  individuals gathered 
from electrophoretic analysis at one or more loci are 
submitted. The program subsequently calculates allele 
frequencies, determines if significant heterogeneity 
exists among subpopulations, tests for departures from 
random mating in subpopulations and calculates F-sta- 
tistics. A description of  the statistical methods is 
provided. Printout from analysis of  allozyme data 
collected from field subpopulations of  the house fly 
(Musca domestica L.) is provided to illustrate and 
evaluate the computational methods. 
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Introduction 

Electrophoretic resolution of  allozymes has provided 
population biologists the means for determining geno- 
typic frequencies among individuals. The breeding 
structure of  field and laboratory populations can be 
monitored through the periodic censusing of  aUelic and 
genotypic frequencies. Statistical analysis of  these fre- 
quencies allows objective conclusions t o ' b e  reached 
concerning mating patterns within subpopulations and 
the degree of  reproductive isolation among subpopula- 
tions. 

Extracting allele frequency data from the genotypes of 
many individuals can be a tedious and inaccurate process 
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when done by hand. Subsequent tests for random mating in 
subpopulations and analysis of variance of allele frequencies 
among subpopulations are similiarly laborious and susceptible 
to error. To overcome these problems, a FORTRAN program 
"'Genestats" was written which calculates allele frequencies 
from genotype data extracted from individuals. The program 
subsequently performs any combination of several statistical 
operations on the data. A more extensive program, BIOSYS-1 
(Swofford and Selander 1981), is available which performs 
some of the operations listed here and a broad array of others 
helpful in phylogenetic studies. Our program concentrates 
solely on the analysis of population structure. "Genestats" 
consists of 850 executable statements, is written in IBM 
FORTRAN IV and can be run on FORTRAN G and 
WATFIV compilers. A printed copy of the program, a test 
data set, and instructions for its use are available from the 
authors at cost. 

The statistical methods used to analyse the breeding 
structure of  populations are scattered throughout the 
literature. The present report compiles these methods. 
As each method is described, the corresponding table 
of  computer output is discussed. The data upon which 
analysis was performed represent a series of  house fly 
(Musca domestica L.) populations sampled at different 
locations in central Iowa. 

The program 

Data input 

The user lists the desired options (Table 1) and provides the 
names of the subpopulations, the names and number of loci 
examined, and the number of alleles at each locus. The geno- 
type of each individual is then entered. A key to the sub- 
populations and the options requested are printed each time 
the program is run (Table 1). 

Allele frequency analysis 

The program calculates allele frequencies in subpopulations. 
Upon request, these frequencies and the corresponding sample 
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Table 1. Printout of subpopulation key and options that may 
be requested by the user 

Key to subpopulations 

Subpopulation no. Subpopulation name 

l Nutrition 10/12/82 
2 Sheep 10/12/82 
3 Pork 10/14/82 
4 Swine 10/14/82 
5 Dairy 10/14/82 

Options requested: Allele frequency calculations 
Chi-square analysis on allele frequencies 
Test for departures from random mating 

- Chi-square analysis on each genotypic 
class 

- Chi-square analysis on observed and 
expected proportions of heterozygotes 

F-statistics: Nei 
F-statistics: Weir and Cockerham 

sizes are printed (Table 2). In the following discussion, the 
calculated frequency of an allele x at locus k in subpopulation 
i will be denoted Pikx. The next option calculates the weighted 
mean allele frequency Pkx, 

Pkx = Z wiPikx (Table 3) (1) 
i 

where 

w i = n i /N  (1 a) 

n i is the sample size from subpopulation i, and N is the sum of 
all the samples. An estimate of the weighted variance un- 
corrected for sample number (Workman and Niswander 1970) 
is next calculated, 

A chi-square test for homogeneity of allele frequencies 
among subpopulations is performed for each allele (Workman 
and Niswander 1970): 

Z 2 = 2 N  s~x/~kx(1 - Pkx) (Table 3) (3) 

with ( r - l )  degrees of freedom for r subpopulations. A 
heterogeneity chi-square value is subsequently calculated for 
all alleles at a locus. The formula (Workman and Niswander 
1970) is: 

X 2 = 2 N ~ (s2x/~kx) (Table 3). (4) 
x 

This test employs ( r - 1 )  ( m -  l) degrees of freedom, where m 
is the number of alleles at the locus. These heterogeneity chi- 
square values are summed over all loci to give an overall com- 
parison of subpopulations. The significance of each chi-square 
value is tested and printed in a subroutine which approxi- 
mates the cumulative chi-square distribution. 

If the chi-square tests on specific alleles proved significant 
at the 10% level, a table is printed (Table 4) indicating the 
relative contributions of the different subpopulations to the 
chi-square value. 

Tests for  random mating 

"Genestats" tabulates and lists the number of individuals 
observed in each genotypic class (Table 5). It then calculates 

Table 2. Allele frequencies detected in 5 house fly subpopu- 
lations 

Locus Allele frequencies in subpopulations 

1. 2. 3. 4. 5. 

A M Y  
(N) 50 50 48 50 50 
I 0.010 0.040 0.000 0.010 0.010 
2 0.080 0.030 0.010 0.020 0.040 
3 0.130 0.110 0.094 0.100 0.180 
4 0.740 0.710 0.844 0.830 0.610 
5 0.040 0.110 0.031 0:030 0.120 
6 0.000 0.000 0.021 0.010 0.040 

A D H  
(N) 50 50 49 50 50 
1 0.000 0.010 0.000 0.010 0.010 
2 0.740 0.690 0.714 0.750 0.660 
3 0.150 0.160 0.092 0.170 0.160 
4 0.110 0.130 0.184 0.070 0.170 
5 0.000 0.010 0.010 0.000 0.000 

P G M  
(N) 50 50 50 50 50 
1 0.010 0.000 0.000 0.000 0.010 
2 0.000 0.000 0.030 0.010 0.000 
3 0.950 1.000 0.950 0.980 0.990 
4 0.040 0.000 0.020 0.010 0.000 

S O D  
(N) 50 50 50 50 50 
1 0.980 0.960 0.940 0.950 0.950 
2 0.020 0.040 0.060 0.050 0.050 

and prints the number of individuals expected by the Hardy- 
Weinberg rule. The chi-square statistic calculated for each 
genotypic class is then printed. The total chi-square accumu- 
lated over all genotypes is given with the degrees of freedom 
(number of genotypes minus the number of alleles) and its 
significance. This method is suspect when the expected num- 
bers in classes are less than one (e.g. ADH,  Table 5). The user 
is provided the option of suppressing this lengthy output and 
printing the second half of Table 5. The observed and expect- 
ed numbers of heterozygotes are printed along with a con- 
servative chi-square test for the homogeneity of observed 
H0(ik ) and expected Hs(ik) heterozygote frequencies. The 
formula (Weir and Cockerham 1984) is, 

)~2 = n i (Hs ( i k  ) _ H o ( i k ) ) 2 / ( ~  P~kx + ( ~  PZkx) 2 - 2  ~ P~kx) 

(Table 5) (6) 

with one degree of freedom. 

Wright ' s  F-statist ics 

The statistical methods discussed heterofore provide 
the inferential tools necessary to detect  significant 
departures  from random mating in a field populat ion.  
Chi-square  analysis of  genotype frequencies within 
subpopula t ions  (Table 5) indicates significant depar-  
tures from random mating. Chi-square  tests of  hetero- 
geneity in allele frequencies among subpopula t ions  
(Tables 3 and 4) indicates subpopula t ion  differentia-  
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Table 3. Weighted mean allele frequencies and analysis of variation in allele frequencies 

Chi-square analysis of allele frequencies 

Locus Weighted Chi-square P Heterogeneity d.f. P 
mean Chi-square 

A M Y  
(N) 248.000 (4 d.f.) 
1 0.014 6.56 0.1613 
2 0.036 8.21 0.0841 
3 0.123 4.47 0.3466 
4 0.746 19.03 0.0008 
5 0.067 12.85 0.0120 
6 0.014 8.11 0.0875 

A D H  
(N) 249.000 (4 d.f.) 
1 0.006 1.99 0.7372 
2 0.711 2.64 0.6205 
3 0.147 3.08 0.5439 
4 0.133 7.30 0.1209 
5 0.004 3.04 0.5506 

PGM 
(N) 250.000 (4d.L) 
1 0.004 3.01 0.5558 
2 0.008 8.57 0.0728 
3 0.974 8.38 0.0787 
4 0.014 8.11 0.0875 

SOD 
(N) 250.000 (4d.~) 
1 0.956 2.19 0.7001 
2 0.044 2.19 0.7014 

Total 

43.12 20 0.0020 

14.74 16 0.5441 

19.72 12 0.0726 

2.19 4 0.7014 

79.76 52 0.0079 

Table 4. Contribution of individual subpopulations to signifi- 
cant (P _~ 0.1) variation in allele frequencies 

Contribution ofsubpopulations to structuring 

Allele Chi- P 
square 

Relative contributions to total 
Chi-square 

Subpopulation no. 

1 2 3 4 5 

A M Y 2  8.212 0.0841 
A M Y 4  19.029 0.0008 
A M Y 5  12.852 0.0120 
A M Y 6  8.113 0.0875 
PGM 2 8.569 0.0728 
PGM 3 8 .378  0.0787 
P G M 4  8.114 0.0875 

0.665 0.014 0.224 0.092 0.005 
0.001 0.036 0.255 0.196 0.513 
0.088 0.237 0.150 0.167 0.358 
0.176 0.176 0.038 0.015 0.594 
0.094 0.094 0.712 0.006 0.094 
0.272 0.319 0.272 0.017 0.121 
0.604 0.175 0.032 0.014 0.175 

tion. Depar tures  from random mating within and 
among subpopula t ions  create hierarchical  structuring 
in the total populat ion.  Wright  (1951) introduced 
F-statistics as a convenient means of  describing the 
breeding structure of  natural  populations.  

To describe nonrandom mating among individuals  
in subpopulat ions,  Wright  (1951) defined the coeffi- 
cient F~s as "the average over all subpopulat ions  of  the 
correlation between unit ing gametes relative to those of  
their  own subpopula t ion" .  

To describe nonrandom mating among individuals  
from different subpopulat ions,  Wright  (1951) defined 
FsT as "the correlat ion between random gametes 
within a subpopula t ion  relative to the gametes within 
the entire populat ion" .  Fsv is positive when subpopula- 
tions are reproduct ively isolated because random 
gametes from a subpopula t ion  bear  alleles more often 
derived from a common ancestor than gametes from 
the total populat ion.  A catastrophic reduction in sub- 
popula t ion  size also increases the correlat ion among 
random gametes. 
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Table 5. Analysis of random mating 

Subpopulation: nutrition 10/12/82 

Locus Geno- Ob- Hardy- Chi- d.f. P 
type served Weinberg square 

no. Expec- 
tation 

A M Y  

A D H  

PGM 

SOD 

1/1 0 0.005 0.005 
1/2 0 0.080 0.080 
1/3 0 0.130 0.130 
1/4 1 0.740 0.091 
1/5 0 0.040 0.040 
2/2 0 0.320 0.320 
2/3 1 1.040 0.002 
2/4 7 5.920 0.197 
2/5 0 0.320 0.320 
3/3 0 0.845 0.845 
3/4 10 9.620 0.015 
3/5 2 0.520 4.212 
4/4 27 27.380 0.005 
4/5 2 2.960 0.311 
5/5 0 0.080 0.080 

Total 6.654 

2/2 31 27.380 0.479 
2/3 8 11.100 0.866 
2/4 4 8.140 2.106 
3/3 2 1.125 0.681 
3/4 3 1.650 1.105 
4/4 2 0.605 3.217 

Total 8.452 

1/1 0 0.005 0.005 
1/3 1 0.950 0.003 
1/4 0 0.040 0.040 
3/3 45 45.125 0.000 
3/4 4 3.800 0.011 
4/4 0 0.080 0.080 

Total 0.139 

1/1 48 48.020 0.000 
1/2 2 1.960 0.001 
2/2 0 0.020 0.020 

Total 0.021 

10 0.7577 

3 0.0375 

3 0.9868 

1 0.8853 

Locus Heterozygotes Chi- P 
square 

Observed Expected 

A M Y  23.0 21.37 0.63 0.4277 
A D H  15.0 20.89 6.85 0.0089 
PGM 5.0 4.79 0.13 0.7207 
SOD 2.0 1.96 0.02 0.8853 

To summar ise  nonrandom mat ing in the entire 
populat ion,  Wright  (1951) introduced a third coeffi- 
cient, FIT, defined as " the correlat ion between gametes 
that unite the produce individuals ,  r e l a t ive  to the 
gametes of  the total populat ion" .  FIT describes non- 

random mating arising among and within subpopula-  
tions and so is expressed in terms of  F1s and FST, 

FIT = FIS + FST -- [FIs" FST]. (6) 

Wright  (1969) discussed situations which give rise to 
negative or posit ive values of  FIT. 

F-statistics have been subject to many qualif ica-  
tions and refinements since the original definit ions 
(Wright  1951). An approach  by Nei (1977) has come 
into general use but  not without  objections. Weir  and 
Cockerham (1984) note that Nei 's  method does not 
account for bias due to small and unequal  sample sizes 
or small numbers  of  subpopulat ions.  Thus, F-statistics 
calculated by Nei ' s  method are a function of  the 
sampling scheme. This is of  concern in field studies 
where sample  sizes are often unequal  and small. It is 
also of  concern when authors compare  F-statistics from 
different studies. A method prescribed by Weir  and 
Cockerham (1984) incorporates sample  size and sub- 
popula t ion  number  into the F-statistics, thus making 
interpretat ion independent  of  the sampling scheme. 
The methods of  Nei  and Weir  and Cockerham are 
both offered as options in "Genestats" .  

Nonrandom mating due to inbreeding within subpopulations 

Fis was originally defined as an "average correlation" over 
subpopulations. Nei (1977) extended Fins to describe the cor- 
relation in a single subpopulation i between gametes bearing 
an allele x at locus k. This is: 

F1s(ikx ) = 1 - [ H o ( i k x ) / H s ( i k x ) ]  (Table 6) (7) 

where Ho( ikx  ) is the observed frequency of heterozygotes 
with allele x and the frequency expected under random 
mating is: 

H s ( i k x ) = 2 p i k x ( 1 - p i k x )  (Table 6). (7a) 

A second refinement of Fis (Nei 1977) calculates the 
correlation among all alleles at a locus in a subpopulation, 

Fis (ik) = l - [Ho(ik)/Hs(ik)] (Table 6). (8) 

Here the expected number of heterozygotes is: 

H s (i k) = 1 - ~ P2ikx (Table 6). (8 a) 
x 

Following the original definition, Fis is next calculated as 
the average over all subpopulations of the correlation between 
uniting gametes bearing a specific allele. Nei (1977) employs 
observed and expected homozygosities, 

Fins (kx )  = (Pkx -- p2x)/(Pkx-- P~x) (Table 6), (9) 

where 

Pkx = Z Wi Pikx (9 a) 
i 

and Pikx is the frequency of x homozygotes in a subpopula- 
tion, wi is as previously defined (Eq. 1 a) and, 

P~x = ~ wip2kx . (9b) 
i 

Weir and Cockerham (1984) calculate Fis(kx ) by using 
heterozygote frequencies: 

Fls (kx )  = Bkx/(Bkx + Ckx) (Table 7), (10) 
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Table 6. F-statistics analysis at the ADH locus by Nei's (1977) 
method 

Locus (K): ADH 

F(IS(IKX)) values 

Subpopulation no. (I) 

Allele (X) 1. 2. 3. 4. 5. 
1 - - 0 . 0 1 0  - -0.010 -0.010 
2 0.376 0.299 0.200 0.307 0.554 
3 0.137 0.256 -0.101 0.220 0.256 
4 0.285 0.381 0.047 -0.075 -0.063 
5 - -0.010 -0.010 - - 

F (IS (IK)) 0.282 0.293 0.088 0.207 0.294 
HS (IK) 0.418 0.481 0.448 0.404 0.510 
HO (IK) 0.300 0.340 0.408 0.320 0.360 

F-statistics for individual alleles: Nei 

Allele (X) F(IS(KX)) F(ST(KX)) F(IT(KX)) 
1 -0.010 0.004 -0.006 
2 0.352 0.005 0.355 
3 0.176 0.006 0.181 
4 0.114 0.015 0.127 
5 -0.010 0.006 -0.004 

0.236 0.008 0.242 
F(IS(K)) F(ST(K)) F(IT(K)) 

HO(K) =0.3454 
HS(K) = 0.4520 
HT(K) --0.4556 

Table 7. F-statistics analysis at the ADH locus by Wier and 
Cockerham's (1984) method 

F-statistics for individual alleles: W & C 

Allele (X) F(IS(KX)) F(ST(KX)) F(IT(KX)) 
1 0.000 -0.008 -0.008 
2 0.361 -0.010 0.354 
3 0.186 -0.008 0.179 
4 0, 124 - 0.002 0.122 
5 0.000 -0.006 -0.006 

0.245 -0.003 0.243 
F(IS(K)) F(ST(K)) F(IT(K)) 

where 

Bkx = [r (fi - 1)1-1 [~/ni  Hs ( ik x) 

- ( 2 f i ) - ' ( 2 f i - l )  ~ niHo(ikx)], 

Ck~ = (rfi) -I Y', niHo(ikx), 
i 

and 

fi = ~ ni/r. 
i 

( 1 0 a )  

(lOb) 

(10c) 

Fls is next calculated as the average correlation among 
all alleles at a locus. With Nei's method, 

Fis (k) = 1 - [H 0 (k)/Hs (k)] (Table 6) ,  (11) 

where H0(k ) and Hs(k) are the weighted averages of H0(ik) 
and Hs(ik)  over all subpopulations. Using Weir and Cocker- 
ham's formulae, 

Fls(k ) = Bk/(Bk+ Ck) (Table 7),  (12) 

where 

Bk = [r ( f i -1)1- '  1~.. niHs(ik) 
t ~  

- (2fi)-I ( 2 f i -  1) ~niHo( ik ) ,  (12a) 

Ck = (rfi)-I ~ ', niHo(ik), (12b) 
i 

and fi is as previously defined (Eq. (10c)). 
Fls is computed as the average correlation among all 

alleles at loci. By Nei's method: 

Fls = ~ Fls(k) " Hs (k)/Y'~ Hs(k) (Table 8). (13) 
k k 

With Weir and Cockerham's method: 

Fls = B/(B+C) (Table 9),  (14) 

where 

B = ~ B~ (14a) 
k 

and 

C = ~'~ Ck. (14b) 
k 

Nonrandom mating arising from reproductive isolation among 
subpopulations 

Wright (1965) stated that FST is "the ratio of the actual 
variance in allele frequencies among subpopulations to the 
maximum possible variance under complete isolation of sub- 
populations". This is, 

Fsv(kX)  = s ~ x / p k ~ ( l -  Pkx) �9 (15) 

Nei's (1977) formulations of FST are all based on Eq. (15) and 
so are all positive. But Cockerham (1969) and Weir and 
Cockerham (1984) observed that FST can be negative when 
there is more variation in allele frequencies within subpopula- 
tions than between subpopulations. This agrees with Wright's 
original (1951) definition of FST as Correlation between 
random gametes within a subpopulation. 

In "Genestats", FST is first calculated as the correlation 
between random gametes from subpopulations bearing allele 
x. Nei calculates Fsr  (kx) using observed and expected homo- 
zygote frequencies: 

FsT(kX) = (P~x - P~x)/(fgkx-- P~x) (Table 6). (16) 
Weir and Cockerham estimate FsT(kx) by using hetero- 

zygote frequencies: 

FsT(kx)=Ak.~/(Akx+Bkx+Ckx) (Table 7) ,  (17) 

where 

Akx = no' [ ( r - 1 ) - f ~  n i V / k x - ( r ( f i - l ) ) - '  
L 

V~kx = (Pikx- Pkx) 2 , (17b) 

C 2 = r ( f i Z ( r - 1 ) ) - ' [ ( ~ .  n~/r ) - f i2] ,  (17c) 
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nc = fi(l - (CZ/r)). (17d) 

FST is next estimated as the average correlation among 
alleles at a locus in random gametes. Nei's statistic is, 

FsT(k) = 1 - [Hs(k)/HT(k)] (Table 6), (18) 

where 

HT(k) = 1 - ~ P~x. (18a) 
x 

Weir and Cockerham calculate FST (k) with the formulae: 

FST (k) = Ak/(Ak + B k + Ck) (Table 7), (19) 

where 

Ak = n~-' [ ( r -1)  -1 ~/niVik - (r(fi-1)) -1 
L 

and 

Vi~ = ~ V,.kx. (19b) 
x 

FST is computed as the average correlation among alleles 
at loci in random gametes. Employing Nei's method: 

FST = ~ HT(k) �9 FsT(k)/~ UT(k) (Table 8). (20) 
k k 

Weir and Cockerham's formula is: 

FST = A/(A+ B + C) (Table 9), (21) 

where 

A = ~ Ak (21 a) 
k 

and B and C are previously defined (Eqs. (14a, b)). 

Table 8. Summary of F-statistics according to Nei 

Mean F-statistics over all loci: Nei 

Locus (K) F(IS(K)) F(ST(K)) F(IT(K)) 

A M Y  0.000 0.026 0.026 
ADH 0.236 0.008 0.242 
PGM -0.035 0.016 -0.019 
SOD 0.045 0.004 0.049 

Mean 0.109 0.015 0.123 

Table 9. Summary of F-statistics and standard deviations ac- 
cording to Weir and Cockerham 

Mean F-statistics over all loci: W & C 

Locus (K) F(IS(K)) F(ST(K)) F(IT(K)) 

A M Y 0.011 0.022 0.032 
ADH 0.245 -0.003 0.243 
PGM -0.025 0.010 -0.015 
SOD 0.055 -0.005 0.050 

Mean 0.119 0.008 0.126 
S.D. (X) 0.05619 0.00576 0.05073 
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Nonrandom mating in the total population 

Equation (6) is the correlation between alleles in individuals 
from the entire population. This correlation is calculated in 
terms of alleles (FIT (kx),  Tables 6 and 7). It is also estimated 
as an average among all alleles at a locus (FIT (k), Tables 6 
and 7). As a summary statistic, FtT is computed as an average 
among alleles at loci (Tables 8 and 9). 

Estimation of the variance in F-statistics 

Weir and Cockerham's method permits the variance of the 
three F-statistics to be estimated. They advocate a "jackknife" 
procedure in which estimates are made by successively 
eliminating one locus at a time. Thus, for example, the vari- 
ance of FST, for y loci is, 

Var (FsT) = y-1 (y_ 1) ~'~ [FsT(L ) - y - I  ~ '  FsT(L)]2, (22) 
L 

where for locus k, 

FsT(L)= ~ Ak/ ~ (Ak+Bk+Ck). (22a) 
k + L  k ~ L  

The variances of Fls and Fsv are calculated in an analogous 
manner. "Genestats" prints the standard deviations of the 
three F-statistics (Table 9), rather than variances, to provide 
additional significant digits. 

Results of housefly electrophoresis 

The mean F-statistics (Tables 8 and 9) demonstrate an excess 
of homozygotes in a house fly population sampled at 5 loca- 
tions. The locus F-statistics pinpoint ADH as the principal 
source of the excess. Allele F-statistics (Tables 6 and 7) show 
heterozygote deficiencies for ADH alleles 2, 3 and 4. Sub- 
population statistics (Table 6) reveal that the deficiencies were 
consistent among subpopulations. Table 5 demonstrates that 
this heterozygote deficiency was statistically significant in sub- 
population 1. It was also significant in subpopulations 2 and 5 
(not shown). 

Heterogeneity in the frequency of AMY alleles contributed 
most to the mean FST value (Tables 8 and 9). AMY alleles 4 
and 5 contributed most to the overall variance. Table 3 de- 
monstrates that the heterogeneity in the frequencies of AMY 4 
and 5 was significant. Inspection of Table 4 suggests that most 
of the heterogeneity arose in subpopulation 5. 

Discussion 

Evaluation ofF-statistics 

Wright's (1951) original derivation of F-statistics was 

through correlation analysis. Recent workers (Nei 1967; 
Weir and Cockerham 1984) mainta in  this approach, 
and so it is often assumed that departures from random 
mating alone cause F-statistics to deviate from zero. In 
practice F-statistics can assume large values for a 
variety of reasons. Selection acting on heterozygotes 
can affect Fls. Selection in subpopulations can alter 
FST. In addit ion to natural causes, technical problems 
may cause significant F-statistics. Inadequate resolu- 
tion of allozymes may lead to inaccurate estimates of 
heterozygote frequencies and thus alter F1s. Null 
alleles can generate a false excess of homozygotes and 
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positive Fis values. Inconsistent resolution of an allo- 
zyme from different samples might increase hetero- 
geneity and thus inflate FST. In short, a wide array of 
biological and technical effects can generate positive 
and negative F-statistics. 

For the foregoing reasons F-statistics must be inter- 
preted cautiously. The statistics describe breeding 
structure but do not alone identify the causes. For 
example, a variety of sources could have generated the 
ADH heterozygote deficiency in house flies. Had in- 
breeding been the sole cause, a uniform homozygote 
excess would have been noted at all loci. The statistics 
demonstrate that the excess was homogeneous among 
subpopulations, but offer no further clues as to the 
cause of the excess. 

Comparison of methods for estimating F-statistics 

This is the first application of Weir.and Cockerham's 
method to genotypic data from natural populations. 
Their method had a notable effect on F-statistics 
(Tables 6-9) .  FST values became consistently smaller. 
Weir and Cockerham's method thus provided a more 
conservative estimate of the degree of differentiation 
among subpopulations. Weir and Cockerham's F:s, 
however, consistently assumed slightly more positive 
values than Nei's F~s, demonstrating that their method 
estimates greater amounts of inbreeding. In unpub- 
lished work, we applied "Genestats" to larger data sets 
in which at least 100 flies were sampled from 6 sub- 
populations. Increasing the sample size diminished the 
differences in estimates provided by Nei's and Weir 
and Cockerham's methods. Weir and Cockerham's 
method should therefore be routinely applied in studies 
where sample sizes are fewer than, say, 100 individuals. 

Frequently breeding structure studies must rely on 
smaller and less uniform samples than those available 
when studying house flies. It would be interesting to 
reevaluate previous studies of breeding structure where 
samples were inconsistent and small. It will be inter- 
esting to see how Weir and Cockerham's method 
affects conclusions in future studies on the breeding 
structure of natural populations. 
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